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INTRODUCTION 

Metastatic progression of prostate cancer (PCa) to bone is a clinically significant event with a 
high incidence and limited treatment options.  Even though a significant amount of resources have been 
utilized to investigate the biochemical relationships in bone metastases, little has been done to 
investigate the physical forces created by tumor cells growing in the relatively constrained and non-
elastic environment.  The overall goal of this project is to understand the changes in physical forces 
associated with tumor growth.  The primary hypothesis to be tested is that PCa bone metastases 
promote pressure increases in bone leading to pro-tumorigenic alterations in the microenvironment.  
Furthermore, exploration of the mechanisms involved in the presence of increased pressure must be 
described.  This research was performed as a postdoctoral fellowship under the mentorship of Dr. Evan 
Keller at the University of Michigan.  We have made substantial progress concerning the measurement 
of physical forces in vivo and have begun to understand the mechanisms by which physical forces create 
a pro-tumorigenic environment.  We have also identified osteocytes as a novel mediator of the pressure 
phenotype, and have characterized their role in promoting PCa growth and invasiveness. 

 
BODY 
 Throughout the course of study and investigation, I, Joseph L. Sottnik, was involved in a well-
rounded training program at the University of Michigan.  This training program included participation in 
various seminars, and development of numerous collaborations within and outside the University of 
Michigan.  I was able to take classes in grant writing and participate in a variety of cancer related 
seminars.  There was significant basic, clinical, and translational exposure throughout the course of the 
program.  I had the privilege to attend national scientific meetings such as the American Association of 
Cancer Researchers (AACR) Focus meeting on the tumor microenvironment (TME) and the American 
society of bone and mineral research (ASBMR) annual meeting.  I also attended local meetings present 
at the University of Michigan.  Throughout the training program I have been able to show that PCa 
tumors grown in the bones of mice lead to an increase in intramedullary pressure.  Furthermore, we 
have described that osteocytes (OCy) are a novel cell type that help promote PCa growth and 
invasiveness.  OCy are terminally differentiated cells of the osteoblast pathway and are embedded in 
mineralized extracellular matrix.  OCy are responsible for maintaining bone homeostasis by coordinating 
osteoblastic and osteolytic processes in response to physical forces.  The role of OCy in tumor biology 
has yet to be described. 
 
Task 1.1 – Identification of pressure changes due to tumor growth 
 We have previously shown that we were able to cannulate mice post-tumor implantation and 
monitor changes in intramedullary pressure (ImP) in real time.  We determined that challenge with 
DU145 or ACE-1 led to a significant increase in ImP.  An average peak pressure of 38.51 ± 8.63 mmHg 
was observed across all mice and all experiments compared to a physiologic pressure of 19.12 ± 8.18 
mmHg.  A representative example using ACE-1 is shown (Figure 1).  After peak pressure was achieved, a 
substantial and reproducible drop in ImP was observed.  This drop was associated with radiographic 
evidence of cortical bone lysis (Figure 1).  We hypothesize that cortical bone lysis acted as a pressure 
release valve for the bone.  Interestingly, challenge with the highly osteolytic PC3 cell line did not lead to 
a change in ImP.  It is plausible that the lytic nature of PC3 allowed for the dissipation of pressure similar 
to cortical breach by DU145 and ACE-1.  
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Task 1.2 – Defining the impact of intramedullary pressure on tumor growth 
 Due to delays in determining the ability of tumors to increase ImP, and technical issues 
concerning the alterations of ImP, we were unable to complete this aim of the project.  For example, we 
determined that extraction of fluid was not suitable for decreasing ImP.  Due to promising results 
concerning the identification of OCy as potential mediators of the pressure effect, extra effort was 
placed into describing the tumor promoting phenomena described below.  Therefore, we are 
investigating other methods such as hind-limb suspension and utilizing Botox injections to inhibit ImP [1, 
2].  
 
Task 2.1 – Characterization of cellular viability and proliferation in response to hydrostatic pressure 
 Initial experiments utilizing the in vivo models in task 1 identified 10 and 30 mmHg as 
reasonable control and peak pressures due to tumor induced increases in ImP.  These pressures were 
used for a number of the early experiments.  However, after completion of the studies in Task 1.1, it was 
determined that across all tumor models, the average basal ImP was 19.12 mmHg and the peak ImP 
induced by tumor was 38.51 mmHg.  Therefore, later experiments have employed 0 (un-
pressurized/atmospheric pressure control), 20 (physiologic baseline), and 40 (peak ImP induced by 
tumor) mmHg for experimental conditions in the modified opticell system previously proposed [3, 4]. 
 Proliferation as assessed by cell counting has been found to be the most reliable method for 
assessing proliferation.  MC3T3 and ST2 (osteoblast cell lines) have decreased cell numbers after 
pressure application for 24 hours (data not shown).  Conversely, MLO-Y4, a murine OCy cell lines, had 
increased cell numbers after pressure application (Figure 2).  Apoptosis has been assessed across all cell 
lines using Annexin V/FITC staining and flow cytometry.  No significant change in apoptosis has been 
observed in any cell line.  Therefore we can conclude that changes in cell number are primarily due to 
altered proliferation. 

 
Figure 1:  Tumor growth leads to increased ImP in mice.  A) Mice were challenged with ACE-1 24 hours prior to 
implantation of a wireless transmitter; mice without tumor serve as controls.  Mice were euthanized due to 
primary tumor size.  A statistically significant increase in ImP is observed.  B) Weekly radiographs show cortical 
bone lysis (white arrow) occurring the same time as the observed drop in ImP suggesting that cortical lysis may 
be acting to relieve tumor induced pressure. 

A) B)
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 We next applied 
hydrostatic pressure to DU145, 
LNCaP, and PC3 human prostate 
cancer cell lines and observed a 
variety of responses (Figure 2).  
Hydrostatic pressure had no 
significant impact on DU145 
viability whereas LNCaP cells were 
highly inhibited in the presence of 
pressure.  No significant 
alterations in apoptosis were 
observed for any of the cell lines 
suggesting that the changes were 
due to cellular proliferation. 

Due to the role OCy play 
as physiologic monitors of 
physical forces in bone, we sought 
to describe the effects of tumor 
induced ImP on OCy.  MLO-Y4 
OCy were treated with 0, 20, and 
40 mmHg of hydrostatic pressure 
for 24 hours and conditioned 
media (CM) isolated from these 
cells.  We have observed that CM 
from pressurized OCy leads to 
increased proliferation, migration, 
and invasion of PCa cells (Figure 
2).  The role of OCy in tumor 
biology has not previously been 
described.  The application of 
pressure to OCy enhanced the 
observed pro-tumorigenic responses.   
 
Task 2.2 – Identification of novel pathway activation 
due to hydrostatic pressure 
 We have focused primarily on the factors 
induced by pressure on bone components, primarily 
osteoblasts and osteocytes.  Early screening 
experiments provided mixed results with few viable 
targets for expanded analysis.  Identification of Frat1 
(upregulated) and Gdf10 (down-regulated) appeared to 
be suitable targets.  However, significant knock-down of 
these genes in PCa was not found to be plausible.  
Therefore, we sought to determine the factors secreted 
from OCy leading to promotion of the invasive 
phenotype described in the presence of pressure.  We 
utilized a commercially available cytokine array to screen for factors upregulated in the presence of 
pressure (Table 1).  The top 5 candidate factors were interleukin 1 receptor alpha (IL-1Rα), CCL5 

 
Figure 2:  Application of hydrostatic pressure to osteocytes promotes 
PCa aggressiveness.  A) Hydrostatic pressure was applied in vitro to 
MLO-Y4 osteocytes and DU145, LNCaP, and PC3 PCa cell lines.  After 
24 hours, cells were counted by trypan blue staining and live cell count 
depicted.  B) CM was isolated from MLO-Y4 OCy under pressure at 0, 
20, and 40 mmHg for 24 hours.  Control media (RPMI with 0.1% FBS) 
was used as a negative control.  OCy CM was then applied to PCa cell 
lines for 24 hours to determine changes in viability as measured by 
resazurin.  CM was used as a chemoattractant in Boyden chamber 
assays to determine alterations in migration and invasion.  CM derived 
from pressurized MLO-Y4 OCy lead to significant dose dependent 
increases in PCa viability, migration, and invasion.  One way ANOVA 
with Bonferroni post-test used for all analyses; bars represent 
significant differences of p<0.05. 

Ctl Media 40 mmHg MLO-Y4 CM Target 

1 32.75 CCL2 

1 34.78 CCL5 

1 21.86 CXCL10 

1 11.28 IL1ra 

1 19.11 MCSF 
Table 1:  Pressurized MLO-Y4 secretes 
numerous cytokines and chemokines.  CM was 
pressurized at 40 mmHg and compared to 
control media by commercially available 
cytokine array.  Table of relative densitometry 
values normalized to control media. 
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(RANTES; regulated on activation, 
normal T cell expresses and secreted), 
monocyte chemotactic protein 1 
(CCL2/MCP1), interferon gamma 
induced protein 10 (CXCL10/IP-10), 
and macrophage colony stimulating 
factor (M-CSF).  Neutralizing 
antibodies and receptor antagonists 
were utilized to determine functional 
inhibition of these chemokines against 
PCa proliferation, migration, and 
invasion.  Screening identified CCL5 for 
further investigation.  
 CCL5/RANTES is an important 
molecule for the recruitment of 
inflammatory leukocytes.  CCL5 has 
been shown to promote migration and 
invasion of a variety of tumor types, 
including PCa [5, 6].  Pressure 
significantly induced CCL5 secretion as 
determined by ELISA.  Recombinant 
CCL5 was used as a chemoattractant 
for PCa cells and induced migration but not invasion (Figure 3).  The effects of recombinant CCL5 could 
be mitigated using neutralizing antibody.  Neutralization of CCL5 from pressurized OCy CM was found to 
inhibit both migration and invasion.  However, the inhibition of only migration and not invasion in the 
presence of recombinant protein suggested that other factors were present in CM that led to OCy 
invasion. 
 Matrix metalloproteinases (MMPs) are a class of compounds that cleave components of the 
extracellular matrix.  MMPs are known to be secreted from cells during bone remodeling [7].  
Furthermore, MMPs are known to be important for the invasive capabilities of tumor cells.  Therefore, 
we used gelatin 
zymography to 
show that MLO-Y4 
cells secreted 
significant 
amounts of MMP-
2 and MMP-9.  
MMP expression 
from MLO-Y4 was 
enhanced in the 
presence of 
hydrostatic 
pressure in a dose-
dependent 
manner (Figure 4).  
Batimastat is a 
broad spectrum 
MMP inhibitor and 

 
 
Figure 4: OCy derived MMP promote invasion.  A)  Zymography of conditioned media 
from pressurized MLO-Y4 osteocytes normalized to cell number shows a significant 
increase in MMP2 and MMP9 expression as pressure increases.  B) Pressurized CM was 
used as a chemoattractant for LNCaP cells.  Addition of Batimastat, a broad spectrum 
MMP inhibitor, blocks CM mediated invasion but not migration.  Migration is not 
impacted as migration is an MMP independent process.  Similar results were observed 
in PC3 and DU145 PCa cells.  Bars represent significant differences of p<0.05. 

A) B)

 
 
Figure 3: OCy derived CCL5 promotes LNCaP migration and 
invasion.  A) Recombinant mouse CCL5 (rCCL5) was used as a 
chemoattractant in Boyden cell assays.  Neutralization of rCCL5 
was achieved using a neutralizing antibody.  B) Conditioned 
media from MLO-Y4 osteocytes promoted migration and 
invasion of LNCaP cells.  Neutralization of CCL5 led to significantly 
decreased migration and invasion.  Similar results were observed 
in PC3 and DU145 cells.  Bars represent significant differences of 
p>0.05. 

A) B)
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was utilized to inhibit OCy derived MMPs.  Batimastat was found to significantly inhibit PCa invasion 
towards CM, but had no effect on migration (Figure 4).  No effect was observed for invasion as matrigel 
is not present, and no ECM must be degraded prior to chemotaxis.  These data provide evidence that 
OCy promote PCa invasiveness through secretion of MMP, to degrade ECM, and secretion of CCL5, 
which acts as a chemoattract for PCa. 
 
Task 2.3 – Validation of candidate genes in tumor bearing mice 
 Do to the difficulty in determining novel pathways and identifying reliable candidate genes of 
interested we were not able to probe tumor samples for alterations in any genes.  However, work is 
ongoing to better understand the pathways and mediators identified through this course of work.  
Specifically, mechanistic studies are to be performed to determine how application of pressure regulates 
increased CCL5 and MMP expression. 
 
KEY TRAINING ACCOMPLISHMENTS 

 Weekly meetings with Evan Keller, mentor, for experimental design and data analysis.  
Discussion and preparation of manuscripts pertaining to projects discussed. 

 Involvement with Keller lab weekly lab meeting and journal clubs 

 Involvement in the University of Michigan P01, program project in prostate cancer bone 
metastasis 

 Presentation at national conferences in bone biology and cancer biology.  Award recipient for 
President’s poster competition at the American Society of Bone and Mineral Research (ASBMR) 
annual meeting. 

 
KEY RESEARCH ACCOMPLISHMENTS 

 Determined that tumor growth increases ImP in mice 

 Identified that cell viability is cell type dependent and primarily due to alterations in 
proliferation and not apoptosis 

 Pressurization of osteocytes leads promotes an aggressive tumor phenotype 

 Identified candidate genes responsible for a pressure phenotype 

 Inhibition of identified mediators inhibits the pro-metastatic phenotype associated with 
osteocytes in vitro 

 
CONCLUSION 
 We have observed that tumor bone metastases increase ImP.  Pressures observed from in vivo 
experiments provided a rationale for ongoing in vitro experiments utilizing bone and tumor cell lines.  
We have observed that increased pressure leads to decreased proliferation of tumor cell lines.  We have 
determined that pressurized osteocytes promote proliferation, migration, and invasion; a novel 
phenotype.  We have identified candidate genes that may play a role in promoting tumor growth in the 
presence of increased pressure.  Even though some of our in vitro experiments have been delayed due 
to difficulties in screening, we are progressing on functional studies to assess the importance of these 
candidates.  Identification of novel mediators of bone tumor metastasis may be important in targeting 
new pathways.  The experiments provide the foundation for future experiments describing the 
osteocyte as a novel mediator of the bone microenvironment of PCa metastases. 
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Osteocytes Serve as a Progenitor Cell of Osteosarcoma
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ABSTRACT
Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although
there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA
progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have
increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA
cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO-Y4, a SV-40 immortalizedmurine osteocyte cell line,
was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. OrthotopicMLO-Y4 tumors
produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that
osteocytes can serve as OSA progenitors. J. Cell. Biochem. 115: 1420–1429, 2014. © 2014 Wiley Periodicals, Inc.

KEY WORDS: DMP1; CANCER; BONE; OSTEOCYTE; OSTEOSARCOMA

Osteosarcoma (OSA), which mainly impacts adolescents, is the
most common primary bone tumor of humans [Bielack

et al., 2008]. OSA only has a 60% 5-year survival rate due to a high
incidence of lung metastasis at the time of diagnosis [Bielack
et al., 2008]. Despite numerous studies, there have been minimal
therapeutic gains in patients presenting with metastatic disease
[Zhu et al., 2013]. Even though chemotherapy is an important
component of therapy, few changes to standardized care have been
implemented over recent decades. The deficit in therapeutic gains for
OSA is due, in part, to the fact that little is known concerning the

tumorigenic process and cell of origin for OSA. Defining the cells
that contribute to the development of OSAwill enhance the ability to
identify therapeutic targets.

Bone is a complex tissue composed of numerous cell types. The
mineralized portion of bone is primarily composed of osteoblasts,
which promote new bone growth, osteoclasts, which resorb old and
damaged bone, and osteocytes, which orchestrate the activities
of osteoblasts and osteoclasts. Osteocytes (OCy) are terminally
differentiated osteoblasts that become sequestered in mineralized
bone [Bonewald, 2011]. OCy are also the most abundant cell type in
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phosphate dehydrogenase; HSP90, Heat shock protein 90; IBSP, Integrin binding sialoprotein; bone sialoprotein; IT,
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acid-containing protein); OCy, Osteocyte; OP, Osteopontin; OPG, Osteoprotegerin; OSA, Osteosarcoma; PDPN,
Podoplanin; e11/gp38; PHEX, Phosphate-regulating neutral endopeptidase homolog x-linked; RANKL, Receptor
activator of nuclear factor kappa-B ligand; SCID, Severe combined immunodeficiency disorder; SIBLING, Small
integrin-binding ligand N-linked glycoproteins; SOST, Sclerostin; SQ, Subcutaneous.
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version.
The authors have no conflict of interest to declare.
Grant sponsor: Department of Defense Prostate Cancer Research Program Training Award; Grant number: W81XWH-
12–1-0172; Grant sponsor: Prostate cancer program project at the University of Michigan; Grant number: P01
CA093900/CA/NCI NIH HHS/United States.
*Correspondence to: Joseph L. Sottnik and Evan T. Keller, Department of Urology, Comprehensive Cancer Center,
University of Michigan, Ann Arbor, MI 48103. E-mail: jsottnik@umich.edu, etkeller@umich.edu
Manuscript Received: 13 February 2014; Manuscript Accepted: 19 February 2014
Accepted manuscript online in Wiley Online Library (wileyonlinelibrary.com): 22 February 2014
DOI 10.1002/jcb.24793 � © 2014 Wiley Periodicals, Inc.

1420

Journal of Cellular
Biochemistry

ARTICLE
Journal of Cellular Biochemistry 115:1420–1429 (2014)



mineralized bone, comprising over 90% of cells [Bonewald, 2011].
OCy are responsible for maintaining bone homeostasis through
mechanosensation, the sensation of physical forces in the bone
environment, and mechanotransduction, the translation of physical
forces into biochemical signals that can be communicated to
surrounding cells. These processes are necessary to measure physical
forces and relate them to osteoblasts and osteoclasts, the effector
cells. OCy are long lived cells, in that a single OCy may have a
lifespan that measure decades [Franz-Odendaal et al., 2006]. The
ability of OCy to coordinate bone formation and lysis in the presence
or absence of mechanical stimuli makes them a unique cellular
component of bone.

OSA is typically described as producing mixed osteoblastic/
osteolytic regions within the tumor. This is unique as many cancers,
such as breast and prostatic carcinoma, metastasize to bone and
produce predominantly osteolytic or osteoblastic lesions, respec-
tively. Osteoblasts have been implicated as OSA progenitors
[Cao et al., 2005; Patane et al., 2006]. Due to the potential
for OSA to be derived from osteoblasts, OSA cell lines, such as
Saos2, are frequently utilized in many bone biology laboratories
for exploring osteoblast biology [Fogh et al., 1977; Rodan
et al., 1987; Czekanska et al., 2012]. However, due to their presence
in the bone and bone-remodeling ability, it is plausible that OCy
may also contribute to the development of OSA. Accordingly, the
goal of this study was to determine if OCy could serve as an OSA
precursor cell.

MATERIALS AND METHODS

CELL LINES
TheMLO-Y4murine osteocyte cell line wasmaintained as previously
described on collagen coated plates [Kato et al., 1997]. Plates were
collagen coated by incubating 0.02M acetic acid (Sigma Aldrich,
St. Louis, MO) and 0.15mg/ml rat tail type I collagen (BD
Biosciences, Bedford, MA) in PBS for 1 h at room temperature
before being washed with PBS. MLO-Y4 was maintained in a-MEM
(Cellgro, Henderson, VA) supplemented with 2.5% heat inactivated
fetal bovine serum (FBS; Gibco, Grand Island, NY), 2.5% heat
inactivated fetal calf serum (Hyclone, Logan, UT), and 1� penicillin/
streptomycin (Gibco). DLM8, K12, K7M2 (murine); Saos2 (human);
andAbrams, D17, Gracie, Moresco, OSCA40, Vogel (canine) cell lines
were maintained in high-glucose DMEM with 10% FBS and
1� penicillin/streptomycin. The HMPOS, HOS, OOS, and POS
(canine) cell lines were maintained in RPMI supplemented with 10%
FBS and 1� penicillin/streptomycin. The MG63 and SJSA1 (human)
cell lines were maintained in MEM with 10% FBS and 1� penicillin/
streptomycin. All cells were serially passaged by trypsinization and
maintained at 37 °C and 5% CO2 in a humidified atmosphere
(standard conditions).

ANIMALS
All animal studies were performed in an AALAC-approved facility,
with approval of the University Committee on Use and Care of
Animals (UCUCA) of the University of Michigan. Male severe
combined immunodeficiency disorder (SCID) mice 8–10 weeks of

age were used for all experiments, and were bred at the University of
Michigan. Five mice per group were used for all in vivo experiments.

IN VIVO TUMOR MODELING
Subcutaneous tumors were established by injecting 1� 106 MLO-Y4
cells suspended in 1� Hank’s balanced salt solution (HBSS; Gibco)
into the right hind-flank of the mouse. Tumors were measured twice
weekly using calipers, and tumor volume was calculated using the
formula V ¼ (S2 · L)/2, where L is the longest dimension measured
and S is the perpendicular measurement.

Orthotopic tumors were established as previously described
[Sottnik et al., 2010]. The proximal tibia was implanted with
1� 106 MLO-Y4 cells while mice were under isoflurane anesthesia.
Weekly radiographs were obtained using a Faxitron MX-20
(Wheeling, IL) at 4� magnification. Orthotopic tumor growth was
assessed using a modified protocol previously described [Yin
et al., 1999]. Briefly, radiographs were scanned at 600 dpi using a
UMAX Powerlook 1000 and Magic Scan V4.71 software (Techville,
Inc, Dallas, TX). It was determined that 600 dpi is equivalent to
55,800 pixels/cm2. Using Photoshop CS3 extended (Adobe Systems
Inc, USA) a region of interest was created encompassing the radio-
opaque area of the tibia between the growth plates. The number of
pixels within this areawas recorded. Pixel area (PA) was converted to
geometric area using the following formula:A¼ (PA� 55,800)� 4;
where 55,800¼ pixels/cm2 and 4 is the radiograph magnification.

IMMUNOHISTOCHEMISTRY
Following euthanasia, primary tumor, lung, liver, and spleen were
isolated from all animals, formalin fixed, and paraffin embedded.
Organs were sectioned on three separate and distinct planes before
undergoing hematoxylin and eosin (H&E) staining. Each organ
section was then reviewed by a board-certified pathologist (R.M.) for
the presence of metastases.

Primary tumors from subcutaneous and orthotopically challenged
mice were stained for H&E, dentin matrix phosphoprotein 1 (DMP1;
Abcam, Cambridge, MA; 1:100), osteocalcin (OC;Millipore, Billerica,
MA; 1:500), vimentin (Bioss, Woburn, MA; 1:200), and pan-
cytokeratin (Bioss; 1:200). Antibody staining was accomplished
using an intelliPATH FLX (Biocare Medical; Concord, CA) automatic
staining system. Reveal decloaker (Biocare Medical) was used for
antibody retrieval followed by rodent block M (Biocare Medical) to
block non-specific binding. Primary antibodies were applied at
dilutions described above. Secondary anti-rabbit antibody conju-
gated to horse radish peroxidase (HRP) was utilized and followed by
staining with DAB followed by hematoxylin counterstaining
(Biocare Medical). Images were captured by an Olympus BX41
microscope with matching software.

REAL-TIME qPCR METHODS
For each cell line, near-confluent cells were washed with 1� PBS,
RNA extracted with Trizol reagent (Invitrogen, Carlsbad, CA) and
purified using an RNeasy Mini-Kit (Qiagen, Valencia, CA) according
to manufacturer instructions. RNA concentrations were measured
using an ND-1000 Spectrophotometer (ThermoScientific, Wilming-
ton, DE). To maximize PCR sensitivity, 5mg of prepared RNA from
each cell line was reverse transcribed using the SuperScript III
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Reverse Transcriptase Kit (Invitrogen). Quantitative real time PCR
was performed in triplicate using SYBR Green qPCR MasterMix
(Qiagen) in a 10mL reaction volume on a Roche LightCycler
480 (Roche, Indianapolis, IN). Primers were purchased from
SABiosciences (Qiagen) or designed using NCBI RefSeq mRNA
sequences and NCBI Primer-BLAST software [Ye et al., 2012]. All
primers utilized, forward/reverse sequences, and amplicon length
can be found in Supplementary Tables I (Mouse), II (Human), and III
(Dog). Measurements from triplicate Ct values were averaged. Mean
Ct values of >30 cycles were considered negative (�), 25–30 (þ),
20–24.99 (þþ), and <20 (þþþ). Beta-actin, GAPDH, and
b2-microglobulin were used as controls to ensure reaction activity.
All samples were positive (þþþ) for control gene expression.

WESTERN BLOT
Cells were grown to near confluence before whole cell lysis using a
Triton X-100 based lysis buffer [1% Triton X-100, 20mM Tris-HCl,
137mMNaCl, 10% glycerol, 2mMEDTA, 1mMPMSF, 1mM sodium
orthovanadate, and protease inhibitor cocktail (Sigma-Aldrich,
St. Louis, MO)]. Protein quantification was performed using a CBA
kit (Thermo-Scientific, Rockford, IL) with a SpectraMax M5 plate
reader (Molecular Devices, Sunnyvale, CA). Equal amounts of
proteinwere loaded on a 4–12%Bis-Tris gel (Invitrogen, Eugene, OR)
and electrophoresed in 1� MES/SDS running buffer (Invitrogen,
Carlsbad, CA). Bandswere transferred to a PVDFmembrane (Bio-Rad
Laboratories, Hercules, CA) and blocked using 5% instant milk
(Biorad) or 5% bovine serum albumin (BSA; Celliance, Kankakee, IL)
in tris-buffered saline with Tween 20 (TBST; 50mM Tris, 150mM
NaCl, and 0.05% Tween 20). Primary antibodies used were: rabbit
polyclonal anti-SV40 T-Antigen (Santa Cruz Biotechnology, Dallas,
TX), mouse monoclonal anti-p53 (Cell Signaling Technology,
Danvers, MA), syrian hamster monoclonal anti-podoplanin (Santa
Cruz Biotechnology), rabbit polyclonal anti-DMP-1 (Abcam), and
rabbit monoclonal anti-HSP90 (Cell Signaling). Primary antibodies
were diluted 1:1000 and incubated overnight at 4 °C. Donkey anti-
rabbit (Jackson Immunoresearch, West Grove, PA), donkey anti-
mouse (Jackson Immunoresearch), and goat anti-syrian hamster
(Santa Cruz Biotechnology) secondary antibodies conjugated to HRP
were used for detection. Detection was accomplished using ECL
reagent (Thermo-Scientific, Rockford, IL) and developed using
radiographic film (Research Products International Corp., Mt.
Prospect, IL).

ONCOMINE STUDY
The ONCOMINE repository (www.oncomine.com) is a repository of
cDNA microarrays. Searching ONCOMINE for the term “osteosarco-
ma,”we identified 15 studies. Of the 15 studies identified, two did not
differentiate OSA specifically from sarcoma, 9 were composed
primarily of cell lines, and 1 only had a single OSA patient; thus these
studies were excluded from further analysis and the remaining three
were analyzed [Baird et al., 2005; Henderson et al., 2005; Kobayashi
et al., 2010]. The Kobayashi Sarcoma dataset was determined to have
the greatest number of patient samples (n¼ 27) for analysis and
differentiated OSA into subtypes [Kobayashi et al., 2010]. Baird
(n¼ 5; [Baird et al., 2005]) and Henderson (n¼ 11; [Henderson
et al., 2005]) data sets did not differentiate OSA subtypes but were

also analyzed. ONCOMINE was queried for genes associated with
OCy and OSA. Statistical analyses were performed using ONCOMINE
algorithms to adjust for multiple comparisons as previously
described [Rhodes et al., 2004; Sottnik et al., 2013].

STATISTICS
Statistical analysis was performed using Prism 5 (GraphPad
Software, La Jolla, CA). Doubling time for in vivo tumor growth
was determined by nonlinear regression of an exponential growth
curve for tumor growth. ONCOMINE data were analyzed as
previously described utilizing ONCOMINES algorithms [Rhodes
et al., 2004; Sottnik et al., 2013]. Supplemental analyses of the
Kobayashi dataset were performed using a two-tailed t-test
comparing osteoblastic OSA to all other OSA subtypes. For all
analyses, P-values of less than 0.05 were considered statistically
significant.

RESULTS

ONCOMINE cDNA MICROARRAY ANALYSIS
The OCy specific gene DMP1 has been previously reported to be
expressed by OSA, suggesting that OCy may contribute to the
development of OSA [Kashima et al., 2013]. DMP1 expression is
characteristic of OCy [Bonewald, 2011]. Accordingly, the ONCO-
MINE microarray depository was queried for previous studies with
sufficient data encompassing OSA patients. The Kobayashi sarcoma
dataset had the greatest number of patients for analysis (n¼ 27) and
was investigated for significant expression differences in OCy
markers [Kobayashi et al., 2010]. DMP1 was expressed in 0/6 non-
osteoblastic OSA tumor samples, whereas 10/21 osteoblastic OSA
had DMP1 overexpression (Fig. 1; P< 0.001). Osteoblastic OSA is the
most common subtype of OSA, composing approximately 60% of all
cases [Mutsaers et al., 2013]. DMP1 was found to have a gene rank of
17, signifying that there were only 16 other genes with more
significant P-values in the dataset (Fig. 1A; Supplemental Figure 1).
Significant overexpression of the OCy-associated genes matrix
extracellular phosphoglycoprotein (MEPE), involved in integrin
association; and phosphate-regulating neutral endopeptidase
homolog x-linked (PHEX), involved in mineralization, were also
observed (Fig. 1; Supplemental Figure 1). Interestingly, alkaline
phosphatase (ALPL), which has been a controversial prognostic
factor in OSA biology [Bielack et al., 2009; Schmidt et al., 2013], was
not significantly associated with osteoblastic OSA in this dataset.
When the dataset was analyzed for gene expression differences in
the above noted genes based on age, sex, primary tumor location,
metastasis at the time of diagnosis, or response to chemotherapy,
there was no significant difference (P> 0.05) associated with
expression of OCy marker expression (data not shown).

We subsequently screened the Baird (n¼ 5; [Baird et al., 2005])
and Henderson (n¼ 11; [Henderson et al., 2005]) datasets for
expression of OCy markers in OSA patients (Supplementary
Figure 1). The Henderson dataset showed that DMP1 was
significantly (P¼ 0.014) increased in OSA patients. Even though
the Baird dataset only had five OSA patients present, DMP1 was
increased, though not significantly (P¼ 0.054). The Henderson
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dataset showed a significant increased expression of MEPE
(P¼ 0.005) in OSA patients, but not PHEX. MEPE and PHEX were
not present in the Baird dataset and thus could not be analyzed. OSA
subtypes were not defined in either the Baird or Henderson datasets.
Together, these data provide evidence of DMP1 overexpression in
clinical OSA.

EXPRESSION OF OSTEOCYTE MARKERS IN OSA CELL LINES
We next sought to determine if established OSA cell lines express
markers known to be associated with OCy. RNA was isolated from
murine, human, and canine OSA cell lines. cDNA was prepared and
qPCR performed for OCy-specific markers and other proteins
important in OSA biology (Supplemental Tables I–III). b-actin,
GAPDH, and b2-microglobulin were used as controls to ensure
reaction activity. As a control for OCy, we utilized the well-
characterized murine OCy cell line MLO-Y4. DMP1 and podoplanin
(Pdpn or e11/gp38) have been used to characterize OCy previously
[Franz-Odendaal et al., 2006; Zhang et al., 2006; Bonewald, 2011;
Woo et al., 2011; Kashima et al., 2013]. Murine OSA cell lines showed
low expression of the OCymarker Dmp1 (Table I). Pdpn (e11/gp38) is
the earliest expressed gene in OCys and high expression was
observed in all cell lines [Zhang et al., 2006]. The OCy related gene
Phex had robust expression in all cell lines; however, Mepe was not
observed in any of the cell lines. All cell lines expressed osteocalcin
(Bglap) to various degrees yet K12 and K7M2 did not express Alpl.
Osteocalcin expression has been shown to be associated with late
osteoblast and early OCy differentiation [Lee et al., 2007]. Sclerostin
(Sost) and receptor activator of nuclear factor kappa-B ligand
(RANKL) are the primary mediators by which OCymediate bone lysis
[Bonewald, 2011]. RANKL activity is opposed by osteoprotegerin
(OPG), a soluble inhibitor and decoy receptor for RANKL. MLO-Y4 is
a known low expresser of Sost [Yu et al., 2011] even though mature
OCy express Sost regularly [Wijenayaka et al., 2011]. Low expression
of Sost by MLO-Y4 has been attributed to the early differentiated
state of MLO-Y4 [Bonewald, 2011]. Sost was not expressed in MLO-
Y4, as previously described, or DLM8. However, Sost was expressed
in K12 and its more metastatic variant K7M2. Conversely, RANKL
was expressed to a greater degree by the Sost negative cell MLO-Y4

and DLM8, with lower expression in K12 and K7M2 cell lines. Bone
sialoprotein (integrin binding sialoprotein; Ibsp) is a component of
mineralized tissues and indicative of the differentiation of mature
osteoblasts into OCy. DLM8 had the greatest expression of Ibsp while
no other cell expressed Ibsp. Together, these data show the complex
expression profile of OSA and the expression of various OCymarkers
by established murine OSA cell lines.

We investigated the expression of OCymarkers in the human OSA
cell lines Saos2, MG63, and SJSA1 (Table II). Saos2 has been
previously described asmore representative of osteoblastic OSA than
MG63 and SJSA1, which are described as more fibroblastic, by ATCC
(the American Type Culture Collection) and independent inves-
tigators [Pautke et al., 2004; Mohseny et al., 2011]. Saos2 was the
only cell line to express DMP1. Since Saos2 is the only human cell
line with an osteoblastic phenotype, these data are similar to the
observations from the ONOCOMINE study. Saos2 expressed both
MEPE and PHEX, similar to the results obtained from the murine
OSA cell lines. However, MG63 and SJSA1 only expressed one of

Fig. 1. Human patients with osteoblastic OSA have increased expression of osteocyte-specific genes. The ONCOMINE database was searched for the term “osteosarcoma.”
The Kobayashi sarcoma dataset was identified as having sufficient information for further analysis. OSA subtypes were analyzed for comparison of the OCy specific markers:
(A) dentin matrix protein-1 (DMP1), (B) matrix extracellular phosphoglycoprotein (MEPE), and (C) phosphate-regulating neutral endopeptidase homolog x-linked (PHEX).
(Heatmap of data present in Supplemental figure 1). Results are reported as log2 median-centered intensity as reported by ONCOMINE. *P < 0.05.

TABLE I. Expression of Osteocyte Markers from Murine OSA Cell
Lines

MLO-Y4 DLM8 K12 K7M2

alpl þþ þ þ � �
bglap þ þ þ þ þ þ þ þ
ibsp � þ þ � �
dmp1 þ þ þ þ
fgf23 � þ þ þ
mepe � � � �
opg þ þ þ þ þ þ þ
pdpn þ þ þ þ þ þ þ þ þ þ þ
phex þ þ þ þ þ þ
sost � � þ þ
tnfsf11 þ þ þ þ � �
b-actin þ þ þ þ þ þ þ þ þ þ þ þ
gapdh þ þ þ þ þ þ þ þ þ þ þ þ

RNA was isolated from murine OSA cell lines, reverse transcribed, and assayed
using qPCR. OSA marker expression was scored based on mean qPCR Ct values
as follows: �>30; þ, 25–30; þþ, 20–25; þþþ, <20.
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these markers each. PDPN was expressed by MG63 and SJSA1.
Moderate expression of ALPL was present across all cell lines, but
only low expression of BGLAP was observed in Saos2. IBSP was
expressed in MG63 and SJSA1 but not in Saos2. The expression of
ALPL, BGLAP, and IBSP paint a complex picture concerning the
derivation and OSA subtype as previously described [Pautke
et al., 2004]. We observed that only Saos2 expressed RANKL, with
none of the cell lines expressing SOST, differing from the mouse cell
lines where cells predominantly expressed one or the other.
Interestingly, OPG was highly expressed in MG63 and to a lesser
degree in Saos2 and SJSA1.

Dogs have a relatively high incidence of OSA compared to
humans, and in many ways are uniquely suited for the study of OSA
due to high incidence of disease and similar pathology [Fan, 2010;
Schmidt et al., 2013]. Screening of numerous canine OSA cell lines
show similar trends to those observed in the murine and human OSA
cell lines; expression of Dmp1, Pdpn, and Bglap with mixed
expression of Alpl (Table III). Expression of Fgf23, Phex, and RANKL
was relatively low across the cell lines queried. Taken together, these
results suggest that OCy are an additional cell type for the
origination of OSA across species.

PROTEIN EXPRESSION OF OSTEOCYTE MARKERS
To confirm that the qPCR results for the OCy-specific markers
reflected actual protein production, whole cell lysates were created
from near confluent murine OSA cell lines. Since MLO-Y4 was
created by expressing SV40-transduced large T antigen under a rat
osteocalcin promoter, we investigated SV40 large T-antigen
expression and observed that only MLO-Y4 expresses SV40 large
T Antigen (Fig. 2) as previously described [Kato et al., 1997]. MLO-Y4
had an overexpression of p53, likely due to SV40 expression and
transformation. However, p53 is a known driver of OSA, and all
murine cell lines were found to express p53 (Fig. 2) [Berman
et al., 2008].

Next we sought to validate the expression of OCy markers by
protein expression as we previously demonstrated by RNA
expression. Indeed, all cell lines expressed PDPN to varying degrees
confirming the qPCR results (Fig. 2). DMP1 was expressed in all cell
lines investigated, though with greater variability than observed by
qPCR (Fig. 2). Protein expression of DMP1 and PDPN is characteristic
of OCy. HSP90 was used as a loading control. These data show that
murine OSA cell lines express markers characteristic of the OCy
phenotype.

CHARACTERIZATION OF THE TUMOROGENICITY OF MLO-Y4 CELLS
Transduction of cells with SV-40 large T antigen has been used to
create multiple models of various tumor types, including OSA,
breast, and prostate cancer, [Atkin et al., 2009; Pipas, 2009]. Thus
we determined if large T antigen conferred an OSA phenotype on
MLO-Y4 cells. Initially, to determine if MLO-Y4 cells are
tumorigenic, 1� 106 cells were implanted subcutaneously (SQ) in
SCID mice. MLO-Y4 cells produced SQ tumors with a doubling time
of 3.2 days (r2¼ 0.523; Fig. 3A). We subsequently injected mice
intratibially (IT) with the MLO-Y4 cells to recapitulate the orthotopic
environment of OSA. Orthotopic tumors developed and induced
radiographically-defined mixed osteoblastic/osteolytic lesions
similar to that observed in OSA patients (Fig. 3B). Tumor burden
was semi-quantified by measuring the radiographic area of the
tumor from weekly radiographs as previously described for intra-
osseous tumors [Yin et al., 1999]. Orthotopic tumors were observed
to have a doubling time of 36.3 days (r2¼ 0.605; Fig. 3C). Mice were
euthanized 6 weeks after challenge due to primary tumor size. Gross
metastases were not observed.

TABLE II. Expression of Osteocyte Markers from Human OSA Cell
Lines

MG63 Saos2 SJSA1

ALPL þ þ þ þ þ
BGLAP � þ �
IBSP þ � þ
DMP1 � þ �
FGF23 � � �
MEPE � þ �
OPG þ þ þ þ þ þ
PDPN þ þ � þ þ
PHEX þ þ �
SOST � � �
TNFSF11 � þ �
b-ACTIN þ þ þ þ þ þ þ þ þ
GAPDH þ þ þ þ þ þ þ þ þ

RNA was isolated from human OSA cell lines, reverse transcribed, and assayed
using qPCR. OSA marker expression was scored based on mean qPCR Ct values as
follows: �>30; þ, 25–30; þþ, 20–25; þþþ, <20.

TABLE III. Expression of Osteocyte Markers from Canine OSA Cell Lines

Abrams D17 Gracie HMPOS HOS Moresco OOS OSCA40 POS Vogel

Alpl � � � þ þ � � � � þ þ �
Bglap þ þ þ þ þ þ þ þ þ þ
Dmp1 þ þ þ � þ þ þ þ � þ
Fgf23 � þ � � � � � þ � �
Pdpn þ þ þ þ þ þ þ þ þ � þ þ þ þ þ
Phex þ � � � þ þ � þ � �
Tnfsf11 � � � � � þ þ � þ þ
b-actin þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ
b2-microglobulin þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ

RNA was isolated from canine OSA cell lines, reverse transcribed, and assayed using qPCR. OSA marker expression was scored based on mean qPCR Ct values as follows:
�>30; þ, 25–30; þþ, 20–25; þþþ, <20.
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HISTOLOGIC ANALYSIS OF MLO-Y4 TUMORS
To examine the histologic features of the resulting MLO-Y4 tumors,
SQ and orthotopic tumors were formalin fixed and paraffin
embedded. Similar findings for SQ and orthotopic tumors were
observed. Multiple organs from mice with orthotopic tumors were
evaluated by conventional H&E histology to investigate metastatic
tumor development; however no metastases were observed in the
lung, liver, or spleen. H&E stained sections from primary tumors
demonstrated a predominantly high grade spindle cell malignant
neoplasm with cells demonstrating coarse chromatin and increased
mitotic activity. However, no obvious osteoid production was
identified in these tumors.

To further histologically characterize the tumor tissue of origin,
immunohistochemistry for vimentin and pan-cytokeratin was
performed. Vimentin is a marker of mesenchymal cells; whereas,
pan-cytokeratin is attributed to epithelial-derived cells. Vimentin
expression has previously been associated with OSA [Barger
et al., 2005]. In this study, normal bone marrow and osteoblasts
were found to positively express vimentin. Tumors resulting from
MLO-Y4 injection were found to have strong cytoplasmic vimentin
expression suggestive of their mesenchymal differentiation (Fig. 4).
However, pan-cytokeratin expression in tumor was negative (data
not shown). These observations identify that MLO-Y4 tumors have a
mesenchymal phenotype consistent with what is expected for OSA.

To characterize the bone cell of origin for the MLO-Y4 tumors
immunohistochemistry for osteocalcin and DMP1 was performed.
Osteocalcin staining was observed in cells of the osteoblast lineage
of normal bone (Fig. 4). Even though osteocalcin has been observed
to be highly expressed in MLO-Y4 cells in culture [Qin et al., 2007],

we observed onlymoderate staining in tumor sections (Fig. 4). DMP1
was found to characteristically stain matrix surrounding OCys
localized to the lacunar canalicular system of normal bone as
previously described (Fig. 4) [Kashima et al., 2013]. DMP1 was found
to be strongly expressed in the cytosol of tumor cells. DMP1 is known
to be secreted and act as a positive factor in mineralization
[Qin et al., 2007]. Thus, these data demonstrate that MLO-Y4 tumors
express (1) a mesenchymal phenotype (2) a late osteoblast/early OCy
marker (osteocalcin), and (3) the OCy-specific marker DMP1. Taken
together, these data indicate that OCy can serve as an OSA
progenitor.

Fig. 3. MLO-Y4 are tumorigenic in SCID mice. MLO-Y4 were injected
subcutaneously (SQ) and orthotopically (intratibial; IT). A) Caliper
measurements of SQ tumors were used to determine tumor volume as
measured twice weekly. B) Weekly radiographs of IT tumors of a representative
mouse are shown. C) Measurement of cross-sectional tumor area measured
from radiographs of IT tumors.

Fig. 2. Protein expression of osteocyte specific genes from murine OSA cell
lines. Whole cell lysates from murine OSA cell lines and MLO-Y4 OCys were
examined by Western blot. Since MLO-Y4 is SV40 large T-antigen transduced,
we probed for SV40 large T antigen and p53. To determine the expression of
OCy-specific markers, DMP1 and PDPN were examined. HSP90 was used as a
loading control.
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Fig. 4. Immunohistochemistry of osteocyte specific markers in MLO-Y4 tumors. Mice were injected with 1� 106 MLO-Y4 cells orthotopically, in the tibia. After 6 weeks, mice
were euthanized and tumor was formalin fixed and paraffin embedded. Immunohistochemical analysis of MLO-Y4 tumors and contralateral normal limbs was performed.
A) Tumor was histologically assessed by H&E staining. B) Further characterization of the tumor was achieved by staining for vimentin (mesenchymal phenotype), osteocalcin
(late osteoblast/early OCy), and DMP1 (OCy origin).
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DISCUSSION

In this study, we provide both expression and functional evidence
that OCys can serve as a cell of origin of OSA. Additionally we have
shown that a transformed OCy cell line, MLO-Y4, is tumorigenic in
mice. The transition from osteoblast to OCy is a complex process with
ill-defined endpoints [Woo et al., 2011]. For example, the expression
of ALP and OC are common to both cell types, with ALP declining
during the transition and OC increasing. It is during this time that
markers characteristic of osteocytes, such as DMP1, PDPN, and
MEPE begin to be expressed. Expression of PDPN and DMP1
have been described as the earliest markers associated with OCy
[Franz-Odendaal et al., 2006; Zhang et al., 2006; Bonewald, 2011;
Woo et al., 2011; Kashima et al., 2013]. OCy further differentiate
leading to expression of markers such as RANKL, FGF23, and SOST
[Franz-Odendaal et al., 2006; Bonewald, 2011]. The OCy cell line
MLO-Y4 expresses DMP1, PDPN, Phex, and RANKL, consistent with
previous reports describing these cells as OCy [Franz-Odendaal
et al., 2006; Zhang et al., 2006; Bonewald, 2011; Woo et al., 2011;
Kashima et al., 2013] Many established OSA cell lines investigated
also express these markers. Data presented herein support OCy as a
progenitor cell of OSA in addition to osteoblasts.

It is likely that transformation of MLO-Y4 occurred due to the
introduction of SV40 large T-antigen during development of the cell
line. SV40 large T antigen can transform cells by inactivating p53
and retinoblastoma (pRb); both molecules are critical in promoting
apoptosis [Lane and Crawford, 1979; Levine and Oren, 2009]. SV40-
based transformation has not only been used as a mechanism to
promote murine models of OSA [Knowles et al., 1990; Marton
et al., 2000; Jones, 2011], but SV40 DNA has also been observed in
human patients with OSA [Lednicky et al., 1997]. Mutations and
inactivations of p53 and pRb are known drivers of OSA [Berman
et al., 2008; Walkley et al., 2008]. This does not diminish the
usefulness ofMLO-Y4 as a tool for the study of OCy biology, but does
provide an additional caveat for its use. It is not uncommon for
tumor cell lines to provide the basis for understanding physiologic
processes. For example, the human OSA cell line Saos2 is widely
utilized for the study osteoblast biology withMG63 to a lesser degree
[Czekanska et al., 2012].

A majority of patients diagnosed with OSA have metastases at the
time of diagnosis, with the majority being lung metastases. We
investigated if MLO-Y4 is capable of producing spontaneous
metastases from an orthotopic location. However, no metastases
were observed in the lung, liver, or spleen of these mice. Even though
metastases significantly increase the usefulness of a model, many
OSA cell lines have required selection of metastatic variants to
increase metastatic ability of weakly metastatic cell lines [Asai
et al., 1998; Barroga et al., 1999; Khanna et al., 2000; Kimura
et al., 2002; Su et al., 2009]. Furthermore, it is possible in the murine
model, that the primary tumor grows rapidly, not allowing time for
metastases to manifest as the mouse must be euthanized due to the
large primary tumor. It may also be possible to develop metastatic
variants of MLO-Y4 by selecting lung metastases after intravenous
challenge similarly to the murine OSA cell lines DLM8 and K7M2
[Asai et al., 1998; Khanna et al., 2000]. We observed expression of
PDPN, an early OCy marker, in a majority of the OSA cell lines

studied confirming previous reports that PDPN is aberrantly
expressed in OSA [Kunita et al., 2011]. PDPN is known to also
play a role in platelet aggregation and has been proposed as a
plausible target to inhibit OSA metastases [Kunita et al., 2011].

To investigate if the OCy markers DMP1, MEPE, and PHEX were
associated with metastasis, we performed a post-hoc analysis of the
Kobayashi sarcoma dataset from ONCOMINE [Kobayashi
et al., 2010]. No significant association was present. Even though
the Kobayashi dataset was the largest OSA dataset present, it is still
relatively small with only 27 patients analyzed. A lack of statistical
power may have led to the non-significant result. It is also plausible
that the OCy factors DMP1, MEPE, and PHEX are not prognostic or
associated with the development of metastases. Expression of these
proteins by OSA tumors and cell lines suggests OCy as an ancestral
cell to the resulting tumor. Investigation of human cell lines also
described osteoblastic OSA (Saos2) as expressing DMP1; whereas,
those described as fibroblastic OSA (MG63 and SJSA1) did not
express DMP1. Results obtained from the Baird and Henderson
datasets provide further evidence of DMP1 overexpression in OSA
[Baird et al., 2005; Henderson et al., 2005]. These data correlate with
the patient data suggesting DMP1 is expressed predominantly by
osteoblastic OSA and are important in describing the etiology
of OSA. DMP1, MEPE, and PHEX belong to the SIBLING
(small integrin-binding ligand N-linked glycoproteins) family of
proteins. The SIBLING family members osteopontin (OP) and IBSP
have previously associated with a metastatic phenotype [Bellahcene
et al., 2008]. Association of SIBLING family members in epithelial
derived tumors and osteotropic metastatic disease has also been
observed [Bellahcene et al., 2008]. Therefore, further investigation is
necessary to determine if DMP1, MEPE, and PHEX play a role in OSA
metastasis or may be of use as prognostic factors.

OSA typically forms mixed osteoblastic/osteolytic lesions. We
observed these changes on radiographs but did not observe osteoid
production in subcutaneous or orthotopic tumors. It is unclear why
these differences persist, but it is plausible that these are primarily
lytic lesions masked by the normal bone architecture. OCys do not
secrete components of extracellular matrix, but do secrete molecules
to mineralize ECM. It is possible that OCy are capable of mineralizing
ECM, but other cells must be present to produce the more immature
bone matrix. There is little evidence, most of it contradictory,
concerning the ability of OCys to create or resorb bone on their own
[Wysolmerski, 2013]. OCys are unique bone cells whose primary role
is the sensation of physical forces in the bonemicroenvironment and
conversion of those signals into biochemical signals. OCys
coordinate osteoblastic and osteolytic responses. Expression of
OPG, RANKL, and SOST are the primary mediators used to activate
osteoblasts or osteoclasts, respectively. We observed mixed expres-
sion of RANKL, OPG, and SOST from OSA cell lines, but observed
cells expressing either RANKL or SOST. All murine OSA cell lines
expressed OPG. Therefore, the potential for antagonistic responses
from OCy are plausible dependent on the microenvironment.
Nevertheless, it is plausible that the mixed lesions characteristic of
OSA are due to the underlying OCy nature of the cells driving these
tumors. OCys provide a mechanism by which local alterations in the
microenvironment lead to osteoblastic or osteolytic regions. Since
OCy coordinate osteoblastic/osteolytic responses physiologically, it
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is plausible that a tumor composed of, or derived from, OCywould be
capable of employing both arms of bone maintenance resulting in
characteristically mixed lesions.

The observations made herein incite new questions concerning
the etiology of OSA. The development of tumor from what are
believed to be terminally differentiated cells is important as these
cells should not be proliferative. Further investigation concerning
the importance of OCy specific factors to OSA progression and
metastasis must also be investigated. Recently, Kashima et al.
published data showing that DMP1 is specifically expressed by OSA
[Kashima et al., 2013]. Their immunohistochemical investigation of a
large sample size of primary bone tumors supports our conclusion
that osteoblastic OSA specifically expresses DMP1 and that OCymay
serve as a progenitor cell for OSA. These observations suggest that
OCy may act as a cell of origin for OSA in addition to osteoblast.
Analysis of the Kobayashi dataset depicted 10 of 21 osteoblastic OSA
patients expressing DMP1 [Kobayashi et al., 2010]. Targeted
inactivation of p53 and pRb has previously been shown to promote
OSA [Berman et al., 2008; Walkley et al., 2008]. Therefore,
it is plausible that OCy are a novel cell of origin for OSA in addition
to osteoblasts. Further investigation is necessary to determine how
the cell of origin alters metastasis and potentially long-term
survival.

The observation that OSA develops from OCy may provide novel
methods for clinical intervention. By better understanding OCy, and
how they react to their environment, we may be able to develop
novel methods of inhibiting OSA growth and metastasis. OCy
biology has not been as elucidated in the same detail as osteoblasts
and osteoclasts even though OCy comprise a much larger percentage
of bone. Ongoing studies to explore the functional relationship of
OCy with other cells in the bone microenvironment may lead to
novel pathways and targets for OSA. Understanding that OCys may
give rise to OSA is of importance for understanding the underlying
tumor biology of OSA, and discovering newmethodologies than can
be exploited to inhibit this aggressive bone disease.
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